Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3146, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605029

RESUMO

Despite their lack of a defined 3D structure, intrinsically disordered regions (IDRs) of proteins play important biological roles. Many IDRs contain short linear motifs (SLiMs) that mediate protein-protein interactions (PPIs), which can be regulated by post-translational modifications like phosphorylation. 20% of pathogenic missense mutations are found in IDRs, and understanding how such mutations affect PPIs is essential for unraveling disease mechanisms. Here, we employ peptide-based interaction proteomics to investigate 36 disease-associated mutations affecting phosphorylation sites. Our results unveil significant differences in interactomes between phosphorylated and non-phosphorylated peptides, often due to disrupted phosphorylation-dependent SLiMs. We focused on a mutation of a serine phosphorylation site in the transcription factor GATAD1, which causes dilated cardiomyopathy. We find that this phosphorylation site mediates interaction with 14-3-3 family proteins. Follow-up experiments reveal the structural basis of this interaction and suggest that 14-3-3 binding affects GATAD1 nucleocytoplasmic transport by masking a nuclear localisation signal. Our results demonstrate that pathogenic mutations of human phosphorylation sites can significantly impact protein-protein interactions, offering insights into potential molecular mechanisms underlying pathogenesis.


Assuntos
Proteínas Intrinsicamente Desordenadas , Peptídeos , Humanos , Fosforilação , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Regulação da Expressão Gênica , Mutação , Proteínas Intrinsicamente Desordenadas/metabolismo , Ligação Proteica , Sítios de Ligação , Proteínas do Olho/genética
2.
Cancers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36428696

RESUMO

Comprehensive genomic profiling using cancer gene panels has been shown to improve treatment options for a variety of cancer types. However, genomic aberrations detected via such gene panels do not necessarily serve as strong predictors of drug sensitivity. In this study, using pharmacogenomics datasets of cell lines, patient-derived xenografts, and ex vivo treated fresh tumor specimens, we demonstrate that utilizing the transcriptome on top of gene panel features substantially improves drug response prediction performance in cancer.

3.
Sci Total Environ ; 853: 158931, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36228784

RESUMO

The use of RNA sequencing from wastewater samples is a valuable way for estimating infection dynamics and circulating lineages of SARS-CoV-2. This approach is independent from testing individuals and can therefore become the key tool to monitor this and potentially other viruses. However, it is equally important to develop easily accessible and scalable tools which can highlight critical changes in infection rates and dynamics over time across different locations given sequencing data from wastewater. Here, we provide an analysis of lineage dynamics in Berlin and New York City using wastewater sequencing and present PiGx SARS-CoV-2, a highly reproducible computational analysis pipeline with comprehensive reports. This end-to-end pipeline includes all steps from raw data to shareable reports, additional taxonomic analysis, deconvolution and geospatial time series analyses. Using simulated datasets (in silico generated and spiked-in samples) we could demonstrate the accuracy of our pipeline calculating proportions of Variants of Concern (VOC) from environmental as well as pre-mixed samples (spiked-in). By applying our pipeline on a dataset of wastewater samples from Berlin between February 2021 and January 2022, we could reconstruct the emergence of B.1.1.7(alpha) in February/March 2021 and the replacement dynamics from B.1.617.2 (delta) to BA.1 and BA.2 (omicron) during the winter of 2021/2022. Using data from very-short-reads generated in an industrial scale setting, we could see even higher accuracy in our deconvolution. Lastly, using a targeted sequencing dataset from New York City (receptor-binding-domain (RBD) only), we could reproduce the results recovering the proportions of the so-called cryptic lineages shown in the original study. Overall our study provides an in-depth analysis reconstructing virus lineage dynamics from wastewater. While applying our tool on a wide range of different datasets (from different types of wastewater sample locations and sequenced with different methods), we show that PiGx SARS-CoV-2 can be used to identify new mutations and detect any emerging new lineages in a highly automated and scalable way. Our approach can support efforts to establish continuous monitoring and early-warning projects for detecting SARS-CoV-2 or any other pathogen.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Águas Residuárias , Cidade de Nova Iorque , Manosiltransferases
4.
Genome Biol ; 23(1): 123, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637521

RESUMO

Tumors are complex tissues of cancerous cells surrounded by a heterogeneous cellular microenvironment with which they interact. Single-cell sequencing enables molecular characterization of single cells within the tumor. However, cell annotation-the assignment of cell type or cell state to each sequenced cell-is a challenge, especially identifying tumor cells within single-cell or spatial sequencing experiments. Here, we propose ikarus, a machine learning pipeline aimed at distinguishing tumor cells from normal cells at the single-cell level. We test ikarus on multiple single-cell datasets, showing that it achieves high sensitivity and specificity in multiple experimental contexts.


Assuntos
Aprendizado de Máquina , Contagem de Células
5.
Cell Rep ; 35(2): 108988, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852857

RESUMO

How regulatory sequences control gene expression is fundamental for explaining phenotypes in health and disease. Regulatory elements must ultimately be understood within their genomic environment and development- or tissue-specific contexts. Because this is technically challenging, few regulatory elements have been characterized in vivo. Here, we use inducible Cas9 and multiplexed guide RNAs to create hundreds of mutations in enhancers/promoters and 3' UTRs of 16 genes in C. elegans. Our software crispr-DART analyzes indel mutations in targeted DNA sequencing. We quantify the impact of mutations on expression and fitness by targeted RNA sequencing and DNA sampling. When applying our approach to the lin-41 3' UTR, generating hundreds of mutants, we find that the two adjacent binding sites for the miRNA let-7 can regulate lin-41 expression independently of each other. Finally, we map regulatory genotypes to phenotypic traits for several genes. Our approach enables parallel analysis of regulatory sequences directly in animals.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Estudos de Associação Genética , Genoma Helmíntico , Mutação INDEL , MicroRNAs/genética , Fatores de Transcrição/genética , Animais , Sequência de Bases , Sítios de Ligação , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Edição de Genes/métodos , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , MicroRNAs/metabolismo , Fenótipo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo
6.
EMBO J ; 40(6): e104296, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33459422

RESUMO

The IκB kinase (IKK)-NF-κB pathway is activated as part of the DNA damage response and controls both inflammation and resistance to apoptosis. How these distinct functions are achieved remained unknown. We demonstrate here that DNA double-strand breaks elicit two subsequent phases of NF-κB activation in vivo and in vitro, which are mechanistically and functionally distinct. RNA-sequencing reveals that the first-phase controls anti-apoptotic gene expression, while the second drives expression of senescence-associated secretory phenotype (SASP) genes. The rapidly activated first phase is driven by the ATM-PARP1-TRAF6-IKK cascade, which triggers proteasomal destruction of inhibitory IκBα, and is terminated through IκBα re-expression from the NFKBIA gene. The second phase, which is activated days later in senescent cells, is on the other hand independent of IKK and the proteasome. An altered phosphorylation status of NF-κB family member p65/RelA, in part mediated by GSK3ß, results in transcriptional silencing of NFKBIA and IKK-independent, constitutive activation of NF-κB in senescence. Collectively, our study reveals a novel physiological mechanism of NF-κB activation with important implications for genotoxic cancer treatment.


Assuntos
Senescência Celular/fisiologia , Quinase I-kappa B/metabolismo , Inibidor de NF-kappaB alfa/biossíntese , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/genética , Animais , Apoptose/genética , Linhagem Celular , Proliferação de Células/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Feminino , Inativação Gênica/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa/genética , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo
7.
Ageing Res Rev ; 64: 101156, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32949770

RESUMO

Single-cell gene expression (transcriptomics) data are becoming robust and abundant, and are increasingly used to track organisms along their life-course. This allows investigation into how aging affects cellular transcriptomes, and how changes in transcriptomes may underlie aging, including chronic inflammation (inflammaging), immunosenescence and cellular senescence. We compiled and tabulated aging-related single-cell datasets published to date, collected and discussed relevant findings, and inspected some of these datasets ourselves. We specifically note insights that cannot (or not easily) be based on bulk data. For example, in some datasets, the fraction of cells expressing p16 (CDKN2A), one of the most prominent markers of cellular senescence, was reported to increase, in addition to its upregulated mean expression over all cells. Moreover, we found evidence for inflammatory processes in most datasets, some of these driven by specific cells of the immune system. Further, single-cell data are specifically useful to investigate whether transcriptional heterogeneity (also called noise or variability) increases with age, and many (but not all) studies in our review report an increase in such heterogeneity. Finally, we demonstrate some stability of marker gene expression patterns across closely similar studies and suggest that single-cell experiments may hold the key to provide detailed insights whenever interventions (countering aging, inflammation, senescence, disease, etc.) are affecting cells depending on cell type.


Assuntos
Imunossenescência , Análise de Célula Única , Envelhecimento/genética , Senescência Celular/genética , Humanos , Inflamação/genética
8.
Aging Cell ; 18(6): e13012, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31397537

RESUMO

Whether extension of lifespan provides an extended time without health deteriorations is an important issue for human aging. However, to which degree lifespan and aspects of healthspan regulation might be linked is not well understood. Chromatin factors could be involved in linking both aging aspects, as epigenetic mechanisms bridge regulation of different biological processes. The epigenetic factor LIN-53 (RBBP4/7) associates with different chromatin-regulating complexes to safeguard cell identities in Caenorhabditis elegans as well as mammals, and has a role in preventing memory loss and premature aging in humans. We show that LIN-53 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in C. elegans muscles to ensure functional muscles during postembryonic development and in adults. While mutants for other NuRD members show a normal lifespan, animals lacking LIN-53 die early because LIN-53 depletion affects also the histone deacetylase complex Sin3, which is required for a normal lifespan. To determine why lin-53 and sin-3 mutants die early, we performed transcriptome and metabolomic analysis revealing that levels of the disaccharide trehalose are significantly decreased in both mutants. As trehalose is required for normal lifespan in C. elegans, lin-53 and sin-3 mutants could be rescued by either feeding with trehalose or increasing trehalose levels via the insulin/IGF1 signaling pathway. Overall, our findings suggest that LIN-53 is required for maintaining lifespan and muscle integrity through discrete chromatin regulatory mechanisms. Since both LIN-53 and its mammalian homologs safeguard cell identities, it is conceivable that its implication in lifespan regulation is also evolutionarily conserved.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Senescência Celular , Longevidade , Músculos/metabolismo , Proteínas Repressoras/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Senescência Celular/genética , Longevidade/genética , Proteínas Repressoras/genética
9.
Nucleic Acids Res ; 47(11): 5735-5745, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31114922

RESUMO

High-occupancy target (HOT) regions are segments of the genome with unusually high number of transcription factor binding sites. These regions are observed in multiple species and thought to have biological importance due to high transcription factor occupancy. Furthermore, they coincide with house-keeping gene promoters and consequently associated genes are stably expressed across multiple cell types. Despite these features, HOT regions are solely defined using ChIP-seq experiments and shown to lack canonical motifs for transcription factors that are thought to be bound there. Although, ChIP-seq experiments are the golden standard for finding genome-wide binding sites of a protein, they are not noise free. Here, we show that HOT regions are likely to be ChIP-seq artifacts and they are similar to previously proposed 'hyper-ChIPable' regions. Using ChIP-seq data sets for knocked-out transcription factors, we demonstrate presence of false positive signals on HOT regions. We observe sequence characteristics and genomic features that are discriminatory of HOT regions, such as GC/CpG-rich k-mers, enrichment of RNA-DNA hybrids (R-loops) and DNA tertiary structures (G-quadruplex DNA). The artificial ChIP-seq enrichment on HOT regions could be associated to these discriminatory features. Furthermore, we propose strategies to deal with such artifacts for the future ChIP-seq studies.


Assuntos
Sítios de Ligação , Imunoprecipitação da Cromatina/métodos , Regiões Promotoras Genéticas , Fatores de Transcrição/química , Motivos de Aminoácidos , Animais , Artefatos , Caenorhabditis elegans , DNA/química , Drosophila melanogaster , Reações Falso-Positivas , Quadruplex G , Genoma , Genoma Humano , Genômica , Humanos , Camundongos , Ligação Proteica , Domínios Proteicos , RNA/química , Análise de Sequência de DNA
10.
EMBO J ; 37(24)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30467221

RESUMO

The IκB kinase (IKK) is considered to control gene expression primarily through activation of the transcription factor NF-κB. However, we show here that IKK additionally regulates gene expression on post-transcriptional level. IKK interacted with several mRNA-binding proteins, including a Processing (P) body scaffold protein, termed enhancer of decapping 4 (EDC4). IKK bound to and phosphorylated EDC4 in a stimulus-sensitive manner, leading to co-recruitment of P body components, mRNA decapping proteins 1a and 2 (DCP1a and DCP2) and to an increase in P body numbers. Using RNA sequencing, we identified scores of transcripts whose stability was regulated via the IKK-EDC4 axis. Strikingly, in the absence of stimulus, IKK-EDC4 promoted destabilization of pro-inflammatory cytokines and regulators of apoptosis. Our findings expand the reach of IKK beyond its canonical role as a regulator of transcription.


Assuntos
Quinase I-kappa B/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Quinase I-kappa B/genética , Complexos Multiproteicos/genética , Proteínas/genética , RNA Mensageiro/genética , Transativadores/genética , Transativadores/metabolismo
11.
Gigascience ; 7(12)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277498

RESUMO

In bioinformatics, as well as other computationally intensive research fields, there is a need for workflows that can reliably produce consistent output, from known sources, independent of the software environment or configuration settings of the machine on which they are executed. Indeed, this is essential for controlled comparison between different observations and for the wider dissemination of workflows. However, providing this type of reproducibility and traceability is often complicated by the need to accommodate the myriad dependencies included in a larger body of software, each of which generally comes in various versions. Moreover, in many fields (bioinformatics being a prime example), these versions are subject to continual change due to rapidly evolving technologies, further complicating problems related to reproducibility. Here, we propose a principled approach for building analysis pipelines and managing their dependencies with GNU Guix. As a case study to demonstrate the utility of our approach, we present a set of highly reproducible pipelines called PiGx for the analysis of RNA sequencing, chromatin immunoprecipitation sequencing, bisulfite-treated DNA sequencing, and single-cell resolution RNA sequencing. All pipelines process raw experimental data and generate reports containing publication-ready plots and figures, with interactive report elements and standard observables. Users may install these highly reproducible packages and apply them to their own datasets without any special computational expertise beyond the use of the command line. We hope such a toolkit will provide immediate benefit to laboratory workers wishing to process their own datasets or bioinformaticians seeking to automate all, or parts of, their analyses. In the long term, we hope our approach to reproducibility will serve as a blueprint for reproducible workflows in other areas. Our pipelines, along with their corresponding documentation and sample reports, are available at http://bioinformatics.mdc-berlin.de/pigx.


Assuntos
Genômica , Interface Usuário-Computador , Imunoprecipitação da Cromatina , Biologia Computacional , Metilação de DNA , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Análise de Célula Única
12.
Cell ; 175(1): 239-253.e17, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30197081

RESUMO

Many disease-causing missense mutations affect intrinsically disordered regions (IDRs) of proteins, but the molecular mechanism of their pathogenicity is enigmatic. Here, we employ a peptide-based proteomic screen to investigate the impact of mutations in IDRs on protein-protein interactions. We find that mutations in disordered cytosolic regions of three transmembrane proteins (GLUT1, ITPR1, and CACNA1H) lead to an increased clathrin binding. All three mutations create dileucine motifs known to mediate clathrin-dependent trafficking. Follow-up experiments on GLUT1 (SLC2A1), the glucose transporter causative of GLUT1 deficiency syndrome, revealed that the mutated protein mislocalizes to intracellular compartments. Mutant GLUT1 interacts with adaptor proteins (APs) in vitro, and knocking down AP-2 reverts the cellular mislocalization and restores glucose transport. A systematic analysis of other known disease-causing variants revealed a significant and specific overrepresentation of gained dileucine motifs in structurally disordered cytosolic domains of transmembrane proteins. Thus, several mutations in disordered regions appear to cause "dileucineopathies."


Assuntos
Transportador de Glucose Tipo 1/fisiologia , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/fisiologia , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/fisiologia , Erros Inatos do Metabolismo dos Carboidratos , Clatrina/metabolismo , Citoplasma/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Proteínas Intrinsicamente Desordenadas/metabolismo , Leucina/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transporte de Monossacarídeos/deficiência , Mutação/genética , Peptídeos , Ligação Proteica , Proteômica/métodos
13.
Dev Cell ; 46(5): 611-626.e12, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30078731

RESUMO

The chromatin regulator FACT (facilitates chromatin transcription) is essential for ensuring stable gene expression by promoting transcription. In a genetic screen using Caenorhabditis elegans, we identified that FACT maintains cell identities and acts as a barrier for transcription factor-mediated cell fate reprogramming. Strikingly, FACT's role as a barrier to cell fate conversion is conserved in humans as we show that FACT depletion enhances reprogramming of fibroblasts. Such activity is unexpected because FACT is known as a positive regulator of gene expression, and previously described reprogramming barriers typically repress gene expression. While FACT depletion in human fibroblasts results in decreased expression of many genes, a number of FACT-occupied genes, including reprogramming-promoting factors, show increased expression upon FACT depletion, suggesting a repressive function of FACT. Our findings identify FACT as a cellular reprogramming barrier in C. elegans and humans, revealing an evolutionarily conserved mechanism for cell fate protection.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Reprogramação Celular , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Fatores de Elongação da Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Cromatina/genética , Proteínas de Ligação a DNA/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Elongação da Transcrição/genética , Transcriptoma
14.
Nucleic Acids Res ; 45(10): e91, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28334930

RESUMO

In the field of RNA, the technologies for studying the transcriptome have created a tremendous potential for deciphering the puzzles of the RNA biology. Along with the excitement, the unprecedented volume of RNA related omics data is creating great challenges in bioinformatics analyses. Here, we present the RNA Centric Annotation System (RCAS), an R package, which is designed to ease the process of creating gene-centric annotations and analysis for the genomic regions of interest obtained from various RNA-based omics technologies. The design of RCAS is modular, which enables flexible usage and convenient integration with other bioinformatics workflows. RCAS is an R/Bioconductor package but we also created graphical user interfaces including a Galaxy wrapper and a stand-alone web service. The application of RCAS on published datasets shows that RCAS is not only able to reproduce published findings but also helps generate novel knowledge and hypotheses. The meta-gene profiles, gene-centric annotation, motif analysis and gene-set analysis provided by RCAS provide contextual knowledge which is necessary for understanding the functional aspects of different biological events that involve RNAs. In addition, the array of different interfaces and deployment options adds the convenience of use for different levels of users. RCAS is available at http://bioconductor.org/packages/release/bioc/html/RCAS.html and http://rcas.mdc-berlin.de.


Assuntos
Genoma , Anotação de Sequência Molecular/métodos , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Transcriptoma , Interface Usuário-Computador , Animais , Sequência de Bases , Sítios de Ligação , Galinhas/genética , Galinhas/metabolismo , Biologia Computacional/métodos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
15.
Sci Signal ; 10(470)2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28292960

RESUMO

Degrons are the elements that are used by E3 ubiquitin ligases to target proteins for degradation. Most degrons are short linear motifs embedded within the sequences of modular proteins. As regulatory sites for protein abundance, they are important for many different cellular processes, such as progression through the cell cycle and monitoring cellular hypoxia. Degrons enable the elimination of proteins that are no longer required, preventing their possible dysfunction. Although the human genome encodes ~600 E3 ubiquitin ligases, only a fraction of these enzymes have well-defined target degrons. Thus, for most cellular proteins, the destruction mechanisms are poorly understood. This is important for many diseases, especially for cancer, a disease that involves the enhanced expression of oncogenes and the persistence of encoded oncoproteins coupled with reduced abundance of tumor suppressors. Loss-of-function mutations occur in the degrons of several oncoproteins, such as the transcription factors MYC and NRF2, and in various mitogenic receptors, such as NOTCH1 and several receptor tyrosine kinases. Mutations eliminating the function of the ß-catenin degron are found in many cancers and are considered one of the most abundant mutations driving carcinogenesis. In this Review, we describe the current knowledge of degrons in cancer and suggest that increased research on the "dark degrome" (unknown degron-E3 relationships) would enhance progress in cancer research.


Assuntos
Neoplasias/metabolismo , Proteínas Oncogênicas/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Sítios de Ligação/genética , Humanos , Modelos Biológicos , Modelos Moleculares , Neoplasias/genética , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos
16.
Nucleic Acids Res ; 44(D1): D294-300, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26615199

RESUMO

The Eukaryotic Linear Motif (ELM) resource (http://elm.eu.org) is a manually curated database of short linear motifs (SLiMs). In this update, we present the latest additions to this resource, along with more improvements to the web interface. ELM 2016 contains more than 240 different motif classes with over 2700 experimentally validated instances, manually curated from more than 2400 scientific publications. In addition, more data have been made available as individually searchable pages and are downloadable in various formats.


Assuntos
Motivos de Aminoácidos , Bases de Dados de Proteínas , Eucariotos , Internet , Transdução de Sinais , Software
17.
Trends Biochem Sci ; 40(1): 36-48, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25475989

RESUMO

Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.


Assuntos
Motivos de Aminoácidos/genética , Interações Hospedeiro-Patógeno/genética , Mimetismo Molecular/genética , Vírus/genética , Animais , Sítios de Ligação , Humanos , Plantas/genética , Plantas/virologia , Mapas de Interação de Proteínas/genética , Virulência/genética , Vírus/patogenicidade
18.
Mol Biosyst ; 10(10): 2626-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25057855

RESUMO

Disease mutations are traditionally thought to impair protein functionality by disrupting the folded globular structure of proteins. However, 22% of human disease mutations occur in natively unstructured segments of proteins known as intrinsically disordered regions (IDRs). This therefore implicates defective IDR functionality in various human diseases including cancer. The functionality of IDRs is partly attributable to short linear motifs (SLiMs), but it remains an open question how much defects in SLiMs contribute to human diseases. A proteome-wide comparison of the distribution of missense mutations from disease and non-disease mutation datasets revealed that, in IDRs, disease mutations are more likely to occur within SLiMs than neutral missense mutations. Moreover, compared to neutral missense mutations, disease mutations more frequently impact functionally important residues of SLiMs, cause changes in the physicochemical properties of SLiMs, and disrupt more SLiM-mediated interactions. Analysis of these mutations resulted in a comprehensive list of experimentally validated or predicted SLiMs disrupted in disease. Furthermore, this in-depth analysis suggests that 'prostate cancer pathway' is particularly enriched for proteins with disease-related SLiMs. The contribution of mutations in SLiMs to disease may currently appear small when compared to mutations in globular domains. However, our analysis of mutations in predicted SLiMs suggests that this contribution might be more substantial. Therefore, when analysing the functional impact of mutations on proteins, SLiMs in proteins should not be neglected. Our results suggest that an increased focus on SLiMs in the coming decades will improve our understanding of human diseases and aid in the development of targeted treatments.


Assuntos
Motivos de Aminoácidos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Proteoma , Proteômica , Sequência de Aminoácidos , Biologia Computacional , Conjuntos de Dados como Assunto , Evolução Molecular , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Mapas de Interação de Proteínas , Alinhamento de Sequência , Transdução de Sinais
20.
Nucleic Acids Res ; 42(Database issue): D259-66, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24214962

RESUMO

The eukaryotic linear motif (ELM http://elm.eu.org) resource is a hub for collecting, classifying and curating information about short linear motifs (SLiMs). For >10 years, this resource has provided the scientific community with a freely accessible guide to the biology and function of linear motifs. The current version of ELM contains ∼200 different motif classes with over 2400 experimentally validated instances manually curated from >2000 scientific publications. Furthermore, detailed information about motif-mediated interactions has been annotated and made available in standard exchange formats. Where appropriate, links are provided to resources such as switches.elm.eu.org and KEGG pathways.


Assuntos
Motivos de Aminoácidos , Bases de Dados de Proteínas , Domínios e Motivos de Interação entre Proteínas , Internet , Complexos Multiproteicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...